Russian Journal of Organic Chemistry, Vol. 39, No. 12, 2003, pp. 1789–1791. Translated from Zhurnal Organicheskoi Khimii, Vol. 39, No. 12, 2003, pp. 1860–1862. Original Russian Text Copyright © 2003 by Bol'but, Dorokhov, Sukach, Tolmachev, Vovk.

Heterocyclizations of Functionalized Heterocumulenes with C,N- and C,O-Dinucleophiles: III.* Cyclization of N-(1-Aryl-1-chloro-2,2,2-trifluoroethyl)-N'-arylcarbodiimides with 3-Substituted 1-Phenylpyrazol-5-ones

A. V. Bol'but, V. I. Dorokhov, V. A. Sukach, A. A. Tolmachev, and M. V. Vovk

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 5, Kiev, 02094 Ukraine

Received November 26, 2002

Abstract—Cyclization of N-(1-aryl-1-chloro-2,2,2-trifluoroethyl)-N'-arylcarbodiimides with 3-substituted 1-phenylpyrazol-5-ones yields 6-aryl-4-arylimino-1-phenyl-6-trifluoromethyl-1,4,5,6-tetrahydropyrazolo-[4,3-e][1,3]oxazines.

N-(1-Chloroalkyl)carbodiimides are used as 1,3-dielectrophilic components in the synthesis of various nitrogen-containing heterocyclic compounds [2, 3]. In particular, we previously showed that condensation of these reagents with 1,3-diketones (which act as O,Cdinucleophiles) yields 1,3-oxazine derivatives [4].

With the goal of synthesizing relatively difficultly accessible fused pyrazolo[4,3-e][1,3]oxazine systems [5], in the present work we examined reactions of N-(1-aryl-1-chloro-2,2,2-trifluoroethyl)-N'-arylcarbo-

diimides **Ia–Ic** with such O,C-dinucleophiles as 3-substituted 1-phenylpyrazol-5-ones **IIa–IIc**. We have found that N-(1-chloroalkyl)carbodiimides **Ia–Ic** react with 1-phenylpyrazol-5-ones **IIa–IIc** containing an electron-acceptor substituent R in position 3 to afford 3-R-4-aryl-6-arylimino-1-phenyl-4-trifluoromethyl-1,4,5,6-tetrahydropyrazolo[4,3-*e*][1,3]oxazines **IIIa–IIIe** (Scheme 1). The reactions occur in benzene in the presence of triethylamine at room temperature and take 3 days.

I, Ar = Ar' = Ph (a); Ar = Ph, Ar' = 4-MeC₆H₄ (b); Ar = 4-MeOC₆H₄, Ar' = 4-MeC₆H₄ (c); II, R = CF₃ (a), MeOC(O) (b), EtOC(O) (c); III, R = CF₃, Ar = Ar' = 4-MeC₆H₄ (a); R = MeOC(O), Ar' = 4-MeC₆H₄, Ar = Ph (b); R = MeOC(O), Ar = 4-MeC₆H₄ (c); R = EtOC(O), Ar = Ar' = Ph (d); R = EtOC(O), Ar = 4-MeOC₆H₄, Ar' = 4-MeC₆H₄ (e).

^{*} For communication II, see [1].

Comp. no.	Yield, %	mp, °C	Found, %				Formula	Calculated, %			
			С	Н	N	Cl	Formula	С	Н	N	Cl
IIIa	46	192–193	61.39	3.74	10.70	21.32	$C_{27}H_{20}F_6N_4O$	61.13	3.80	10.56	21.49
IIIb	47	222-223	64.76	4.36	10.81	11.45	$C_{27}H_{21}F_{3}N_{4}O_{3}$	64.03	4.18	11.06	11.25
IIIc	45	201-202	62.28	4.41	10.15	10.34	$C_{28}H_{23}F_{3}N_{4}O_{4}$	62.68	4.32	10.44	10.62
IIId	50	184–185	63.74	4.32	10.99	11.50	$C_{27}H_{21}F_{3}N_{4}O_{3}$	64.03	4.18	11.06	11.25
IIIe	53	167–168	63.07	4.45	10.38	10.14	$C_{29}H_{25}F_3N_4O_4$	63.27	4.58	10.18	10.35

Table 1. Yields, melting points, and elemental analyses of 4-aryl-6-arylimino-1-phenyl-4-trifluoromethyl-1,4,5,6-tetra-hydropyrazolo[4,3-*e*][1,3]oxazines **IIIa**–**IIIe**

Table 2. IR and NMR spectral parameters of 4-aryl-6-arylimino-1-phenyl-4-trifluoromethyl-1,4,5,6-tetrahydropyrazolo-[4,3-e][1,3]oxazinesIIIa-IIIe

Comp. no.	IR spectrum (KBr), ν, cm ⁻¹	¹ H NMR spectrum & ppm (I Hz)			
	C=N	N-H		δ _F , ppm		
IIIa	1693	3450	2.32 s (3H, CH ₃), 2.25 s (3H, CH ₃), 7.05 d (2H, $J = 8.1$), 7.16 d (2H, $J = 7.8$), 7.34 d (2H, $J = 7.8$), 7.47 d (2H, $J = 8.4$), 7.51 d (1H, $J = 7.5$), 7.62 t (2H, $J = 8.1$), 7.92 d (2H, $J = 8.01$), 9.75 s (1H, NH)	-60.98, -74.41		
IIIb	1690 1700 ^a	3435	2.26 s (3H, CH ₃), 3.58 s (3H, CH ₃ O), 7.05 d (2H, $J = 8.01$), 7.33 m (5H, H _{arom}), 7.60 t (2H, $J = 8.0$), 7.94 d (1H, $J = 8.1$), 9.63 s (1H, NH)	-74.45		
IIIc	1685 1700 ^a	3390	2.28 s (3H, CH ₃), 3.66 s (3H, CH ₃ OCO), 3.77 s (3H, CH ₃ O), 6.82 d (2H, $J = 8.7$), 7.04 d (2H, $J = 8.3$), 7.48 m (5H, H _{arom}), 7.57 t (2H, $J = 7.9$), 7.97 d (2H, $J = 8.3$), 9.56 s (1H, NH)	-74.90		
IIId	1690 1700 ^a	3290	1.06 s (3H, CH ₃ , $J = 7.2$), 4.03 q (2H, CH ₂ O, $J = 7.2$), 6.97 t (1H, $J = 7.2$), 7.31 m (5H, H _{arom}), 7.53 m (7H, H _{arom}), 7.93 d (2H, $J = 8.1$), 9.8 s (1H, NH)	-73.74		
IIIe	1695 1700 ^a	3310	1.13 t (3H, CH ₃ , $J = 7.1$), 2.26 s (3H, CH ₃ C ₆ H ₄), 3.76 s (3H, CH ₃ O), 4.09 q (2H, $J = 7.1$), 6.84 d (2H, $J = 8.7$), 7.05 d (2H, $J = 8.4$), 7.47 m (5H, H _{arom}), 7.60 t (2H, $J = 8.0$), 7.94 d (1H, $J = 8.1$), 9.63 s (1H, NH)	-74.45		

^a $v_{C=O}$.

Most probably, the reaction begins with attack by the more electrophilic α -carbon atom in 1-chloroalkylcarbodiimides I on the oxygen atom of pyrazol-5-ones II to give 1-(5-pyrazolyloxy)alkylcarbodiimides IV (cf. [3]) which then undergo rearrangement into intermediates V having a 2,4-diaza-1,3-diene structure. Cyclization of the latter occurs even at room temperature via attack by the highly electrophilic C=N carbon atom on the π -electron-rich C⁴ carbon atom of the pyrazole ring. The proposed reaction sequence is supported by the IR and ¹⁹F NMR spectra of the reaction mixture, which were recorded immediately after quantitative separation of triethylamine hydrochloride. In the ¹⁹F NMR spectra we observed signals from CF₃ groups in intermediates **IV** and **V** at δ_F –81 ppm [4] and –68 ppm [6], respectively, which had almost equal intensities. The IR spectra contained absorption bands due to N=C=N fragment at 2160–2170 cm⁻¹ and C=N bond at 1650–1660 cm⁻¹. The above ¹⁹F NMR signals and IR bands disappeared on prolonged storage of the mixture (72 h at 25°C) or on heating for 2 h in benzene under reflux.

4-Aryl-6-arylimino-1-phenyl-4-trifluoromethyl-1,4,5,6-tetrahydropyrazolo[4,3-e][1,3]oxazines **IIIa**– **IIIe** (Tables 1, 2) are colorless high-melting crystalline substances. Their structure was proved by the IR and ¹H and ¹⁹F NMR spectra. In the IR spectra of **IIIa–IIIe** absorption bands due to exocyclic imino groups and endocyclic NH groups were present in the regions 1685–1695 and 3290–3450 cm⁻¹, respectively. Compounds **IIIa–IIIe** characteristically showed in the ¹⁹F NMR spectra a singlet from the CF₃ group at δ_F –73.7 to –74.9 ppm, indicating that this group is linked to the C–C–N fragment [7]. Fusion at C⁴ of the pyrazole ring is consistent with the ¹H NMR spectra which lack signal from proton in that position but contain a singlet at δ 9.56–9.75 ppm from the NH proton.

EXPERIMENTAL

The IR spectra of samples prepared as KBr pellets were recorded on a UR-20 spectrometer. The ¹H NMR spectra of solutions in DMSO- d_6 were measured on a Varian Gemini spectrometer at 300 MHz using HMDS as internal reference. The ¹⁹F NMR spectra were obtained from solutions in DMSO- d_6 using a Varian Gemini instrument (188.28 MHz); CCl₃F was used as internal reference.

1-Chloroalkylcarbodiimides **Ia–Ic** were synthesized by the procedure reported in [7].

4-Aryl-6-arylimino-3-R-1-phenyl-4-trifluoromethyl)-1,4,5,6-tetrahydropyrazolo[4,3-e][1,3]oxazines IIIa–IIIe. A mixture of 0.005 mol of 1-chloroalkylcarbodiimide **Ia–Ic**, 0.005 mol of 1-phenylpyrazol-5-one **IIa–IIc**, and 0.006 mol of triethylamine in 20 ml of benzene was stirred for 2 h at room temperature, the precipitate of triethylamine hydrochloride was filtered off, the filtrate was heated for 2 h under reflux or was left to stand for 72 h. After removal of the solvent, the residue was recrystallized from 2-propanol–hexane (3:1).

REFERENCES

- Vovk, M.V., Lebed', P.S., Sukach, V.A., and Kornilov, M.Yu., *Russ. J. Org. Chem.*, 2003, vol. 39, p. 1781.
- Vovk, M.V. and Samarai, L.I., Ukr. Khim. Zh., 1992, vol. 58, no. 9, p. 773.
- Vovk, M.V., Bol'but, A.V., Dorokhov, V.I., Lebed', P.S., and Kolesnik, P.B., *Russ. J. Org. Chem.*, 2000, vol. 36, p. 1739.
- 4. Vovk, M.V. and Dorokhov, V.I., *Russ. J. Org. Chem.*, 1997, vol. 33, p. 96.
- Zayed, S.E., Pol. J. Chem., 1994, vol. 68, no. 12, p. 2535.
- Vovk, M.V. and Dorokhov, V.I., *Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol.*, 1996, vol. 39, nos. 1–2, p. 15.
- 7. Gorbatenko, V.I., Fetyukhin, V.I., and Samarai, L.I., *Zh. Org. Khim.*, 1977, vol. 13, p. 271.